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A B A N A C H  SPACE WITH FEW OPERATORS 

BY 

S A H A R O N  SH E LAH 

ABSTRACT 

Assuming the axiom (of set theory) V = L (explained below), we construct a 
Banach space with density character ~1 such that every (linear bounded) 
operator T from B to B has the form a I + "/'1, where I is the identity, and T~ has 
a separable range. The axiom V = L means that all the sets in the universe are 
in the class L of sets constructible from ordinals; in a sense this is the minimal 
universe. In fact, we make use of just one consequence of this axiom, ~,,1 
proved by Jensen, which is widely used by mathematical logicians. 

NOTATION. Let  i, j, a ,  /3, y, 3 be  ordinals,  to the first infinite ordinal ,  to~ the  

first uncoun tab le  ordinal.  Le t  k, l, m, n, p be  natura l  numbers ,  and let a, b, c, d 

be  reals, and x, y, z e l emen t s  of  a (vector ,  or  norm,  or  Banach )  space.  

THE MAIN THEOREM. A s s u m e  the axiom V = L holds. Then there is a Banach  

space 2 ,  and an element of  the space z, (i < toO, such that: 

(1) span{z, : i < tol} is dense in 2 ,  1[ z, ]l = 1, and there are projections P~(a < too 

of  norm 1 of  2 into itself, P~(z,) = 0 for i >=/3, Po(z,) = z, for i </3. So the density 

character of  Z is to1 and it has a basis {zi : i < tol}. 

(2) I f  T : B --~ B is (linear, bounded)  operator, then for some real a, Tz, = az, for 

all but countably many  i's. So T -  a l  is an operator with a separable range. 

REMARKS. (1) W e  can p rove  similar  t h e o r e m s  for  higher  cardinals,  i.e., if 

~({6  < A+:cf6 = h}), we can cons t ruc t  a space  with densi ty  cha rac te r  A + such 

that  every  o p e r a t o r  T of the space  is a l +  T1; TI has range  with densi ty  

charac te r  A. 

(2) W e  can choose  our  space  so that  for  every  uncoun tab le  set of  z~'s, there  is 

a coun tab le  set which genera tes  an l |  space  and an l l -Banach  space.  

The construction 

STAGE A. Let  {z,: i  < to~} gene ra t e  freely a vec to r  space  H over  Q (the 

rationals).  For  a set I of ordinals  let /-/i and also H ( I )  deno te  span{z, : i E I} 
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( = the  subvec to r  space  spanned  by z ,  i E I ) .  As  an ordinal  i is {j : j  < i}, H~ is 

the vec tor  space  spanned  by {zj : j  < i}. 

Let  I7  (m < to, i < tot) be  finite subsets  of i, increasing with m, and i = Um I7 .  

For  subsets  At ,  A 2 , ' . "  of H,  ( A t ,  A 2 , " ' ) ,  is the  span of At  U A 2 U - - -  . W e  

usually omi t  H and wri te  y instead of {y}. 

STAGE B. A subset  I of tot is called closed if for  each limit ordinal  i < tot 

which satisfies (Vj < i) (=la) (j < a < i ^ a E I )  be long  to L I is u n b o u n d e d  if 

(Vi < tot) (=lj < tot) (i < j ^ j E I ) .  A set of I C_ to~ is called stationary if it has a 

n o n - e m p t y  intersect ion with every  closed u n b o u n d e d  subset  of tot. 

STAGE C. By Jensen  [1], if V = L then there  are sets D~, funct ions  f~(i < tot) 

and  r~ E {0, 1} such that  

(i) f~ is a two-place  funct ion f rom Hi into the reals, D~ a subset  of  i. 

(ii) For  every  subset  D of tot and two-place  funct ion f rom H into the reals, 

and  r E {0, 1}, {i < tol : D fq i = D,,  f lH~ = f~, r~ = r} is a s ta t ionary  subset  of  toz. 

F r o m  now on f~ are as above.  

STAGE D. In a n o r m  space  Z, for  z E Z, X C Z, we say z is good ove r  X if 

0r E X ) I I z  + x l l - > l l z  II, Ilxll and Ilzll = 1. 

If z0, " ", zk E Z, X _C Z we say (Zo, " -, zk) is good  over  X if II z, II = 1 and  for  

any reals a~ and  x E X 

II ~ + 4 ~ ll ~ 4 , ,, 

N o t e  that  (a) (Zo) is good  over  X iff Zo is good  over  X ;  (b) if (Zo, - - - ,zk)  is good  

ove r  X then so is every  sequence  f rom (Zo,"  ", zk). 

STAGE E. Suppose  Y, Z are n o r m  spaces,  Y fq Z = X, and let W be  a vec tor  

space  such that  Y, Z are subspaces  of it, and W = Y + Z (as vec to r  spaces).  W e  

can define a no rm on W which extends  the no rms  on Y and Z,  and get  a n o r m  

space,  as follows: 

II w ll = inf { ll y ll + ll z ]l : y E Y ; z E Z, w = y + z }. 

In this case the  unit  ball of W is the convex  hull of the unit balls of  Y and Z. W e  

call this N t - a m a l g a m a t i o n .  Note  that  

(a) if y E Y is good  over  X, it will be  good  over  Z ;  and 

(b) if also z E Z is good  over  X then IlY + z ]J = 2. 

STAGE F. Suppose  that  in Stage E,  
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Y = (X, yo,-" ", yk), Z = ( X ,  z o , . . . , z , ) ,  

(yo,'" ",yk), (z0,-- . ,zt)  are good over X. Then there is another  way to define a 

norm on W extending the norms on Y and Z :  for x ~ X 

I I /FI  I fit b.y~ + ~.  r + x = max b.y.  + x , c.zo + x . 
n = 0  n = 0  n = 0  n = 0  

We call this N~-amalgamation (unlike Nl-amalgamation, it apparently does 

not depend only on Y and Z, but also on span {yo, �9 �9 ", yk } and span {Zo, �9 �9 zk }). 

Note that 

(a) (zo,---,z~) is good over Y, 

(b) for n _-< I, m _<- k, zn + y. is good over X and in particular [I z, + y. [[ = 1, 

(c) if I (1)<  1, and we first amalgamate X, (X, yo,. . . ,y~),  (X, zo,. .- ,zz(,)  in the 

above-mentioned way and then amalgamate X '  = (X, Zo," ", z , , ) ,  (X ' ,  yo,'" ", y~ ), 

(X' ,zt( ,§ we get the same norm. 

STA~E G. We shall define by induction on i < Oil norm spaces Z ,  increasing 

with i, such that Z~ as a vector space is H,, and for some i's, infinite sets S~ C oJ 

and elements yT, y ? E H ,  (for rn<~o)  when r~=0,  and y~ ( rn<co,  

1<= l<=p(m, i ) )  when r, = 1, such that (not distinguishing strictly between 

subspaces of Hi and of Z,) 

(*)  if y < = a o < a ~ < " ' < a k < = i ,  w-<--i, k a natural number, r ~ = 0 ,  yO is 

defined, then for infinitely many m E S, 

(I) the amalgamation of the triple 

H(I 'O,  (H(I~'),y~'), (H(I '~) ,zo~, . . . ,z~> 

is by the N~-amalgamation, i.e., for x C H ( I 7 )  

[ lay, '+ ~obtz,~,+x[ = m a x { l a y ? + x  I, [It~=ob~Z,~,+x[}; 

(II) the amalgamation of the triple 

(H(IT) ,y '~) ,  (H( IT) ,yT ,YT) ,  (H ( IT ) , y T ,  Z~o , ' " , zo , )  

is by the N~-amalgamation. 

So in particular 

(*') z~ is good over H~, and if 7 =< a0 -< a ~ " -  < at  then (Z~o," ' ,z ,~) is  good 

over Hr.  

We also demand 

(**) if T <= ao < a~ < . . . < ak <- i, w <= i, k a natural number,  r~ = t,  then for 

infinitely many m < to the amalgamation of the triple 
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n ( I 7 ) ,  (H(IT) ,  y~, �9 �9 y ~,~,,)), <7q(i7), z ~ , . . . ,  z, ,  > 

is by N|  

Fo r  i limit Z, = U,<,  Zj, for  i < to, ]]E,<, a,z, II = max,<~ t a, 1. 

STAGE H.  Now we do  the  induct ion step,  so we suppose  the  n o r m  on Hi is 

defined,  i = to, and we call the  n o r m  space  Z,. In this s tage we shall define y ?, y7  

(m < t o )  and S,, and in the next  stage we shall define the  n o r m  on H,+I. 

R e m e m b e r  that  f, is a two place funct ion f rom Hi to R given by the Jensen  

d i a m o n d  (see Stage  B). 

If there  is a (bounded)  o p e r a t o r  T on 2~ such that  for every  x, y, E Hi, 

f~ (x, y) = II Tx - y II, it is unique,  and  we call it T,. 

If  T~ is not defined we do not  define S,, y ? ,  y?. So suppose  T~ is defined.  

(a) If Y is a Banach  space,  T an o p e r a t o r  on Y, H C Y a subspace ,  then let 

c(H, T, Y) = sup{d( Ty,(H, y >): y ~ Y, y good over H}, 

where  d ( y l , H l ) i s  the dis tance be tween  yl and  H , ,  i.e., i n f{ l ly~ -x l l : x  EH~},  

and let 

c~(H, T, Y) = sup{d(Ty, n ) :  d( Ty, <H, y >) >= c(H, T, Y ) -  e 

and y is good  over  H}.  

No te  that  c(H, T, Y)=< [I T][ and it decreases  with H. 

N o w  if r, = 0, choose  yT, y ?  in H~ such that:  

(b) (i) d(Ty?, (H(I?), y?))>=c(H(l?), T,, Z , ) -  l /m ,  

(ii) y7  is good  ove r  H(IT), 
(iii) d(TyT, n(IT))>= c,,. (H(I?), T,, 2 , ) -  1/m, 
(iv) I ITyr -y~ l l<l /m.  

Clearly c~,,. (H(I?), T,, .Z,) is a real  n u m b e r  of  abso lu te  value < II Zll, hence  there  

is an infinite set S, C_ to such that  

(c) for  k < r n ~ n  in S,, 1/k > lc~,,,,(H(I?), T~,2~)-c~/,(H(IT), T,, L)I. 
(d) If r, = 1 choose  a p = p(m,i)< to and y ~ U  {z~ : m a x / ? <  a < i, a ~ D,} 

such that:  

(i) for  every  x E H(IT), 

a~y ,3 + x = sup II aty ~ + x ]l 
l = l  

(notice each y,,3 is good  ove r  H(I?)), 
(ii) if a m o n g  the p ' s  satisfying (i) there  is a max imal  one,  this will be  our  p ; 

o therwise  choose  p = m. 
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STAGE I. NOW we have to define the norm on H~+I (after  we have def ined it 

on Hi),  and define, if necessary,  y?,y?(m < to) or y,.3. 

We have to satisfy the requ i rements  (*)  and (**)  f rom Stage G;  when ak < i 

they are satisfied by the induct ion hypothesis .  Clearly there  are only countably  

many appropr ia te  requi rements ,  so we can find a list of them of length to, each 

appear ing infinitely many times. 

Let  {/3, : n < oa} be a list of i = {./:/" < i}. Now we define by induct ion on n < to 

a finite set J ,  _C i, and a norm space Z? which as a vec tor  space is H(J. U {i}) (we 

shall not distinguish) such that 

(i) L c_ L+,,  
(ii) Z? is a subspace of Z ,  "+', 

(iii) i =  O .<o . J . ,  

(iv) in ZT, z, is good over  H ( J . ) .  

For  n = 0 let Ho be the empty  set, and the norm Z ~ is [I az, II = l a I. 
Suppose we have def ined Z7 for  n, and let us define ZT*' .  Let  

(k, 3,,ao," ",ak-L) be the n- th  in the list of cases of (* )  and (**)  f rom Stage G. 

Assume for  now that r, = 0 (the case r, = 1 is just simpler).  If { a 0 , "  ", ak-,} ~ J., 

we let J.+, = J.  U {/3.}, and we define the no rm of Z ,  "+~ by N, -amalgamat ion  of 

H(J,), Z",, H(J.+~) (see Stage E). 

Now if {a0,". ,  as-,} c_ Jo, let 3. - 3 /=  {/30,-" ",/3,} (as 3' --< a0 < " -  necessarily 

{o~0, �9 �9 oek_,} _c {/30,'' ",/3,}). By the induct ion hypothesis ,  (*)  of Stage G holds for  

3' =-< 13o_-< . . .  _-</3~ hence  there  is an m E S~ satisfying 

(1) J .  n 3' _C 1 7 (possible as (* )  says " fo r  infinitely many m ' s "  and 3' = 

U , .  I 7 ,  I7  increase with m, and J .  is finite), 

(2) the amalgamat ion  of the triple 

H(I7), ( n ( I V ) , y 7 ) ,  (H(I7), Z~o,'") 

is an N~-amalgamat ion,  

(3) the amalgamat ion  of the triple 

(H( Ig ) ,YT) ,  (H(I"~),yT,y"?), (H(IT),yT,z~o, '") 

is an N,-amalgamat ion .  

We choose a finite J.+~ such that J .  _C J.+~ C_ i,/3, E J.+~ and y 7, Y7 E H(J .+I)  

(this is trivial). Now we define Z~ '+~ by successive amalgamat ion .  

( a )  We make  an N, -amalgamat ion  of the triple H(J,), ZT, H(J, U 17): z~ is 

good (in it) over  H(J. U I;) by (a) of Stage E. 

(/3) We  make  an N~-amalgamation of H(J. O I"~), H(J. U I7  U {i}) (defined 

in a ) ,  and ( H ( J .  tO I; ') ,  y~') (possible as z, is good  over  H(J. tO I"r by ( a )  and y~' 
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is good over H(J,  O 17) by the choice of m to satisfy (2) and (a) of Stage F). By 

(a) of Stage F, zi is good over (H(J,, U I~.), y.~) in the amalgamated space we 

have just defined. 

(3') We make the Nl-amalgamation of 

( n ( J ,  U I T ) , y T ) ,  H(J~§ ( n ( J ,  U17  U{i}) ,yT)  

(with the norm defined in (/3)) and call it Z~ '+1. By (a) of Stage E z, is good over 

H(L+O in Z7 +~. 

It is easy to check that (I) and ( I0  of (*) hold for 3', ao , . . . ,  a~ and m (by (c) of 

Stage F). 

So Z7 is defined for every i, and let Z,.~ = U , < ~ Z T .  Clearly Z~+~ as a vector 

space is/-/~+1 (as/3, e J~*O. Each requirement 3' --< a0 < "." < ak = i appears in 

our  list infinitely many times so for every n big enough {a0, '" ,a~}_C J, ,  so 

clearly (*)  holds for i + 1. 

STAGE J. We have defined Z~ for i <col. Let Z = Ui<~, Z~ (so as a vector 

space it is H) ,  and Z,, its completion, is the Banach space which exemplifies our 

theorem. 

So let T be an operator  on Z, and we shall prove it is as mentioned in the 

theorem, i.e., for some a, for every large enough i, Tz, = az,. We define a two 

place function f from H into R:  

/(x,  y) = II Tz - y II. 
By Stage B 

I = {i < oJ,:f tH, =/~, r, = 0} 

is a stationary subset of tot (see Stage B). 

STAGE K. For each finite-dimensional subspace G of Z and m < to there is 

y~ E Z good over G such that 

d(Ty~,  G, y~) _-> c(G, T, 2) (1  - 1/m ) d (T~y ,  H)  >= cl/,, (G, T, Z ) -  1/m. 

For each x E Z there is i(x)  < ~o~ such that x, Tx E Z,x>. Now for each a < to,, 

A,, = { i ( x ) : x  EH,~ or x = y~ for some finite-dimensional G C H,,,,rn <to} is 

countable, hence i (a)  = supA~ < ~o,. Now A = {j < ~o~:(Va < j ) i ( a ) < / }  is a 

closed unbounded subset of tot (closed-trivially by the definition, unbounded 

because i (a)  increases with ct, so if jo=j , j . .~  = i(j.), then jo < U . j .  < to~ and 

U . j .  is in this set). As I is stationary (see Stage B for definition, and Stage J for 

the fact) there is y E A N I (I from Stage J). Clearly T maps Z ,  into zZ,, hence it 

maps Z ,  into Z, ,  and 
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c(H(IT),  T , Z ) =  c(H(IT), T,,2~) and 

c~,,,, (H(I'~), T, Z)  = c,,,,, (H(IT) ,  T ,  2 0 

(as T E A ) a n d  T.,=T[Z,  (as T E l ) .  

STAOE L. Now we shall prove that for every i > 3', Tz, ~ (Z:,, z,) (3, is as 

chosen at the end of Stage K, and will remain fixed). 

For this it suffices to prove that for any real e > 0, d(Tz,, (H(IT),  z,)) =< 5~ for 

some m < t o .  So let e > 0  be given. Now Tz, is in the closure of Z =  

span {z~ : a < to~}, so for some I(0) < to and a, E R, and distinct /3(1) < to~ (for 

l _-< l (O)) :  
(a) I] rz, - Y,~,,o)a, zzo, l[ < e. 

So we can choose k < to, and a 0 <  . . .  < ct~ < to,, 3' =< a0 such that 

{i,/3(0),... ,  f l ( / (0))}-  3' _C{a0,' . ' ,a~}. 

Now by (*) (from Stage G), for infinitely many m E Sv, I and II from (*)  hold 

(for our k, T, a 0 , "  ", ct~ ). So we can choose some m for which {/3 (0),. �9 (l(0))} O 

3' C_ I7 and 1/m < e. Clearly 

( b )  z ,  = dE, E , ~ . 0 )  a,z~,) E H(I 7 U {or0,  �9 �9 -. ot~ }) 

and by I of (*)  and Stage F 

(c) z, + y7 is good over HT. 
Now we shall write a series of inequalities which will prove 

d(Tz,, (H(IT),  z , ) )=  5e;  for notational convenience let x range over H(I'~), and 

a, b range over R. 

(d) c(H(IT), 7',, 2 , )  = 

c(H(IT), T , Z ) _  -> 

m m U(T(z, + y , ) ,  (H~,  z, + y~')) > 

[as T E A, see Stage K] 

[by c 's  definition, and (c) above] 

[by d ' s  definition] 

inf l lT(z,+y'7)+a(z,+yT)+xl]>= [as[[Tz,-z, ll<e, TyT=T,  y7 and 

[]T, yT-YT[[--< 1/m as mentioned in (b) 

of stage H] 

inf ]]z, +y~ '+  az, + aye '+  x ]1- 1/m - ~ >= [by II of (*)1 
a , x  

inf ( l l y T + a y T + x  +(byT+x,)ll+ 
a , b , x , x  I 
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+ [Iz, + az, - ( b y T +  x,)ll- 1/m - ~) = inf 
a,b, x l , x 2  

+ IIz, + az, - bye '+  x211- 1 /m - e )  > - 

(lly~'+ a y T +  b y T +  xll[+ 

inf 
a,b, Xl,~2 

Ily'C + ay'C + byT  + x~ll+ inf Ilz~ + az, - byT  + x 2 l t - 1 / m  - e >----- 
a,b,x i,x2 

[as II Ty 7 - Y 711 < 1/m,  I[ Tz, - z, II < r ] 

inf IITy7 + a y 7  + b y 7  + x ,  II 
a,b, X l 

- 1 / m + i n f t t T z , + a z , - b y ' ~ + x 2 l t - e - 1 / m - e > =  [by d ' s  definition] 
a,b, x2 

d(Ty '~ ,  ( H T ,  y'~) ) + in f  ll Tz, + az, - by T + x l l -  2/rn - 2e  >= 

[by (b) of Stage H] 

c ( H ( I ' r  T~, Z , )  - 1 /m + inf II Tz, + az, - b y 7 +  x [I-  2 / m  - 2e. 
a,b ,x  

Compar ing  the first and last e lements  we see that 

(e) inf,~b.x II TZ, + az, - bY7 + x I<-_ 3 / m  + 2e. 

Now by the choice of m 

(f) 1/m < e. 

Combining  we get d(Tz , ,  ( H 7  *l, z,)) _-< d(Tz , ,  (I-17, YT) -< 3 / m  + 2e  < 5e. 

STAGE M. For  each /3 <col  we define an ope ra to r  Pa on Z. : P~(z,) = 0 for  

i =>/3, and Pa(z,) = z, for  i </3.  It is easy to check that: 

(a) Pa is well def ined and is a project ion with norm 1 on to  Za ;  

(b) f o r / 3  < a, P~P~ = P.P~ = P~. 

(c) If P ~ ( x ) # O ,  a limit, then for some /3 < a ,  P ~ ( x ) # O .  

STAGE N. Let  T , y  be as in Stage L. So for every  i_->y, Tz, E ( Z , z , ) ,  so 

Tz, = a,z, + x ~ x~ ~ z , .  

We shall p rove  that  for  some 8, Y ~ ~5 < ~ol, and for  every  i = & x ~ = 0. 

Suppose  not,  so A~ = {i < COl :i  => y, Ilx ~ I1# 0} is uncountable .  For  each i E At  

choose a minimal/3,  _---Y such that Pa , (x~  0 (it exists as P , (x  ~ = x, ~ because  

x ~ E Z , ) .  By (c) of Stage M /3, is a successor ordinal,  so for  some /3 < y, 

A:  = {i E A1:/3, = /3  + 1} is uncountable .  So for  each i E A2, for  some real 

dli# 0, Pa(x ~ = d~i za. So for some a > 0 and s E {1, - 1}, A3 = {i E A2: sd~ > a } 

is uncountable .  So for  each i E A3,  PaTz ,=d]xa ,  sd~ > a. 
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By Stage B, I '  = {i < to, : r~ = 1, f[  H, =/ , ,  A3 O i = Di } is a stationary subset of 

to1. Let 

A = {i < to~: i is limit, i > y, and A~ n i is unbounded below i, 

and in (d) of Stage H, if we ask y ~ in {z~ : max I7 < a, a ~ A3} 

the value of p = p(m, i )  does not change}. 

As in Stage K, we can prove A is closed and unbounded so I O A # O, and 

choose in it an element 8. Now for infinitely many m < t o ,  p(m,8)>-m.  

Otherwise choose mo < to such that 

(a) m >- r n o ~ p ( m , 8 ) <  m 
and choose i EA2 ,  i > &  By (**) of Stage G, for some m >too,  H ( ~ ) ,  

( H ( ~ ) ,  z,), ( H ( ~ ) ,  y~'.,,-.., y ~.p~,,)) have N| Now checking (b) of 

Stage H, we see that z, was an appropriate candidate for being y~,~,,,e)+, hence 

p(m, 8) = m, contradiction. 

So for m, l, y~.tE {z~ : a  E As}, hence P~TyT,~E {sbxo : b > a}. Now for every 

m, (see (**) of Stage G) 

" = m x y~z = 1 .  

I[T(~;'y.m,)ll>llP~+,T(~=~'y~%)ll  [as []P,+,]] = 1 by Stage M] 

=]P(~")Po+ITy~a[,=, [as Pt3+lTy~lE{sbxo:b>a}] 

p(m,$) 

= Z ]]Po+ITyZ, I] 
I = 1  

> p(m,8)a  

m a .  

Hence ]] T]] _-> ma, as a > O, m (m < to) arbitrarily large, we get a contradiction. 

STAGE P. (we omit 0 as a stage). We now want to show that d, (i < to,) is 

eventually constant. Otherwise there are distinct reals d ~ d '  such that 

(a) for I = 1, 2 and a < to1, and e > 0, there is i, a < i < to1, and ]d, - d ' [  < e ; 

w.l.o.g, d o= 0, d ' =  1 (otherwise, we look at the operator  l / ( d ' - d ~  - d~ 

( I - - the  identity operator).  

Let e > 0  be arbitrary, e < l / 1 0 0 .  Choose a < / 3 < 8  (_->y),ld,  l<  

e, l l - d o l < e .  By (*) of Stage G, for k = 1, a0=  a , a , = / 3 ,  i = y  we can find 

r e ( l ) <  m in S, such that (I) and (II) of (*)  holds for m and for re ( l )  and 

lira (1) < e, 12m (1) < m. 
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We now try to get a contradiction to the choice of yT. We repeat Stage L with za 

for z, so (b), (c), (d) holds ((a) is trivialized--we know better), but we want to 

deviate in the middle of (d): 

c(H(IT), T,, Z)_- > inf ([[Y7 +aY7 + b y 7  +x,l[ 
a,b, xl,x2 

+llTz~, + aza - by7 + x2H- 1/m).  

So for some a, b, xl, x2 we get this infimum up to 1/m, so 

c(H(IT) ,  T,, 2 ,)  + 2/m >= IlyT+ ay~'+ byT+ x~l] + II Tz,, + aZa -- by7+ x2H = 

[as II Ty~' - y7 II < 1/m and Tz~, = d,,z,~] 
I I T y T + ( a + b ) y T + x l l l + l l d , ~ z ~ , + a z ~ , - b y T + x z l l - 1 / r n  = [by I of (*)] 

II TRY'+ (a + b)y ~'+ x2ll + max (ll(d~ + a)z,~ + x211, II- by7 + x2l[} - 1/m 

[as za, y7 are good over H(IT)]  

>- It Ty'~ + (a + b)y7 + x, It + max {I d~ + a t, I b ]} - 1/m 

=> d(TyT, ( n  ( ~  ), YT))+ max {Ida + a I, I b [}-  1/rn 

_-> c ( H ( ~ ) ,  T ,  2 0  + max {I da + a I, ]b I} - 2 /m.  

We can conclude that 

(b) I b I, ]d~ + a I < 4/m, 
(c) H Ty7 + (a + b)yT+ x,l[ <- a(Ty 7, (H(IT), YT)) + 4/m 

(for (b) look at the first and last terms in our series of inequalities, for (c), if it 

fails use this in the passage from the fifth term to the sixth term, and we shall get 

a contradiction). 

Combining (b) and (c) we get 

(d) II Ty'~ - &Y7 + x, II <= d(TyT, {H(~) ,  Y7 )) + 12/m. 
Now remember Ida I < e, 1/m < e hence 

(e) IlTy7 "[- Xll]~-~ d(TyT,  ( n ( ~ ) ,  yT))+ 13e. 

Similarly, for /3 instead a, (d) holds, but I I - d o l < e  hence for some 

x ~ ~ H ( I T )  

(f) IITy7 -Y7 +x~ll- -< a(TyT, <H(~), yT))+ 13e. 
By the version of (d) for (/3), for y = y 7 + z~ and the choice of y7 in Stage H 

(g) d(Ty, {H(~),  y))>c(H(~) ,  T,, 2 , ) -  l/m(1). 
Now za is good over {H(~) ,  YT, TyT) hence 
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(h) d(Ty ,  H ( ~ ) )  = inf II Ty7 + d~z~ + x II 

= inf [11Ty7 - ay'~ + x~ll + tld~za - ay7 + x211l 
a , x l , x 2  

d(Ty 7, ( H ( / 7 ) ,  y 7 ) ) +  1 - e 

[by (e)] 

>- d(Ty"~, H ( ~ ) )  + 1 - 14e 

So y cont radic ts  the definit ion of cl/..~l)(H(~), T .  Zv) and the  choice  of  yT. 
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